Training age-related multitasking deficits in older adults through an action driving video game.

Joaquin A Anguera, Jacqueline Boccanfuso, Jean L Rintoul, Omar Al-Hashimi, Erwin Kong, Yudy Cristo, Farshid Faraji, Radwa Moustafa, Eric Johnston, and Adam Gazzaley

Departments of Neurology and Physiology, W. M. Keck Center for Integrative Neurosciences, University of California San Francisco, San Francisco, California.

Experimental Overview

- Older adults have been shown to be more impacted by interference than young adults, especially when that interference is an interruption (part of a secondary task - multitasking; Clapp & Gazzaley, 2010; Clapp et al., 2011).

- We designed a novel action driving videogame (NeuroRacer) to challenge multitasking abilities through the integration of i) a target discrimination task, and ii) a visuospatial tracking task. This paradigm served as the basis for 2 different training interventions (dual-task training & single-task training) targeting age-related multitasking deficits in interference processing.

- Following an initial enrollment of 60 healthy older adults (61-79), 50 individuals completed either a dual-task training regime, a single task training regime, or acted as a no contact control group. Training took place at home in twelve 1-hour sessions over the course of a month. Participants were evaluated on a battery of cognitive measures as well as the NeuroRacer game before and after the training period.

NeuroRacer Conditions/Training

- **Discrimination**
 - No Interference
 - Single-task Training (n= 15)
 - Dual-task Training (n= 20)
 - No Contact Control (n= 15)

- **Tracking**
 - No Interference

- **Multitasking**
 - Interruption

Sign Level - Training

Training Results

Dual and Single task training for discrimination and tracking across the 12 sessions. Discrimination training showed a group main effect (p< .005), unlike tracking (p> .25). However, there was no group x session (2x) interaction for either measure (p> .30 for each).

NeuroRacer Results

Dual-task training led to smaller discrimination multitasking costs than single-task training or practice-related effects (p< .005). No such effects were observed for tracking (p> .25). Examination of each condition separately reveal that this improvement was not practice or single-task dependent, supporting the selectivity of the multitasking training.

Future Directions

This intervention showed the effective ability to mitigate age-related discrimination multitasking effects. Subsequent analyses will focus on the examination of EEG recordings during the NeuroRacer task, other measures of the cognitive battery, and performance on selected measures 6 months following each participant’s final visit.

Questions? Comments? email: joaquin.anguera@ucsf.edu

Acknowledgements

Thanks to J Avila, N Barbahyia, M Gugel, C Vong, B Yang, and D Yerukhimov for help with data collection. Thanks to D Ellington, N Falstein, and M Omernick for assistance with game development. Support provided by a grant from Health Games Research, a national program of the Robert Wood Johnson Foundation (AG).